Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
NPJ Vaccines ; 7(1): 88, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1967607

ABSTRACT

mRNA vaccines can be developed and produced quickly, making them prime candidates for immediate outbreak responses. Furthermore, clinical trials have demonstrated rapid protection following mRNA vaccination. Thus, we sought to investigate how quickly mRNA vaccines elicit antibody responses compared to other vaccine modalities. We first compared the immune kinetics of mRNA and DNA vaccines expressing SARS-CoV-2 spike in mice. We observed rapid induction of antigen-specific binding and neutralizing antibodies by day 5 following mRNA (4 µg/mouse), but not DNA (50 µg/mouse), immunization. Comparing innate responses hours post immunization, the mRNA vaccine induced increased levels of IL-5, IL-6, and MCP-1 cytokines which maybe promoting humoral responses downstream. We then evaluated the immune kinetics of an HIV-1 mRNA vaccine in comparison to DNA, protein, and rhesus adenovirus 52 (RhAd52) vaccines of the same HIV-1 envelope antigen in mice. Again, induction of envelope-specific antibodies was observed by day 5 following mRNA vaccination, whereas antibodies were detected by day 7-14 following DNA, protein, and RhAd52 vaccination. Thus, eliciting rapid humoral immunity may be a unique and advantageous property of mRNA vaccines for controlling infectious disease outbreaks.

2.
Sci Transl Med ; 14(654): eabn1413, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1949951

ABSTRACT

To combat the HIV epidemic and emerging threats such as SARS-CoV-2, immunization strategies are needed that elicit protection at mucosal portals of pathogen entry. Immunization directly through airway surfaces is effective in driving mucosal immunity, but poor vaccine uptake across the mucus and epithelial lining is a limitation. The major blood protein albumin is constitutively transcytosed bidirectionally across the airway epithelium through interactions with neonatal Fc receptors (FcRn). Exploiting this biology, here, we demonstrate a strategy of "albumin hitchhiking" to promote mucosal immunity using an intranasal vaccine consisting of protein immunogens modified with an amphiphilic albumin-binding polymer-lipid tail, forming amph-proteins. Amph-proteins persisted in the nasal mucosa of mice and nonhuman primates and exhibited increased uptake into the tissue in an FcRn-dependent manner, leading to enhanced germinal center responses in nasal-associated lymphoid tissue. Intranasal immunization with amph-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice compared to unmodified protein. Amph-RBD immunization induced high titers of SARS-CoV-2-neutralizing antibodies in serum, nasal washes, and bronchoalveolar lavage. Furthermore, intranasal amph-protein immunization in rhesus macaques elicited 10-fold higher antigen-specific IgG and IgA responses in the serum and nasal mucosa compared to unmodified protein, supporting the translational potential of this approach. These results suggest that using amph-protein vaccines to deliver antigen across mucosal epithelia is a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases.


Subject(s)
COVID-19 , HIV Infections , Administration, Intranasal , Albumins , Animals , Antibodies, Viral , COVID-19/prevention & control , HIV Infections/prevention & control , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Lipids , Macaca mulatta , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Vaccination
3.
NPJ Vaccines ; 7(1): 23, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1703964

ABSTRACT

Emerging SARS-CoV-2 variants with the potential to escape binding and neutralizing antibody responses pose a threat to vaccine efficacy. We recently reported expansion of broadly neutralizing activity of vaccine-elicited antibodies in humans 8 months following a single immunization with Ad26.COV2.S. Here, we assessed the 15-month durability of antibody responses and their neutralizing capacity to B.1.617.2 (delta) and B.1.351 (beta) variants following a single immunization of Ad26.COV2.S in mice. We report the persistence of binding and neutralizing antibody titers following immunization with a concomitant increase in neutralizing antibody breadth to delta and beta variants over time. Evaluation of bone marrow and spleen at 15 months postimmunization revealed that Ad26.COV2.S-immunized mice tissues contained spike-specific antibody-secreting cells. We conclude that immunization with Ad26.COV2.S elicits a robust immune response against SARS-CoV-2 spike, which expands over time to neutralize delta and beta variants more robustly, and seeds bone marrow and spleen with long-lived spike-specific antibody-secreting cells. These data extend previous findings in humans and support the use of a mouse model as a potential tool to further explore the dynamics of the humoral immune response following vaccination with Ad26.COV2.S.

4.
Nature ; 601(7893): 410-414, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521758

ABSTRACT

The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Nucleosides/chemistry , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/standards , Female , Macaca fascicularis/immunology , Male , Memory B Cells/immunology , Nucleosides/genetics , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/standards , Viral Load , mRNA Vaccines/standards
5.
Adv Healthc Mater ; 10(22): e2101370, 2021 11.
Article in English | MEDLINE | ID: covidwho-1449905

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described. MSRs loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid A (MPLA), and SARS-CoV-2 viral protein antigens slowly release their cargo and form subcutaneous scaffolds that locally recruit and activate antigen-presenting cells (APCs) for the generation of adaptive immunity. MSR-based vaccines generate robust and durable cellular and humoral responses against SARS-CoV-2 antigens, including the poorly immunogenic receptor binding domain (RBD) of the spike (S) protein. Persistent antibodies over the course of 8 months are found in all vaccine configurations tested and robust in vitro viral neutralization is observed both in a prime-boost and a single-dose regimen. These vaccines can be fully formulated ahead of time or stored lyophilized and reconstituted with an antigen mixture moments before injection, which can facilitate its rapid deployment against emerging SARS-CoV-2 variants or new pathogens. Together, the data show a promising COVID-19 vaccine candidate and a generally adaptable vaccine platform against infectious pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Biocompatible Materials , COVID-19 Vaccines , Humans
6.
Cell ; 184(6): 1589-1603, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1141229

ABSTRACT

Vaccines are critical tools for maintaining global health. Traditional vaccine technologies have been used across a wide range of bacterial and viral pathogens, yet there are a number of examples where they have not been successful, such as for persistent infections, rapidly evolving pathogens with high sequence variability, complex viral antigens, and emerging pathogens. Novel technologies such as nucleic acid and viral vector vaccines offer the potential to revolutionize vaccine development as they are well-suited to address existing technology limitations. In this review, we discuss the current state of RNA vaccines, recombinant adenovirus vector-based vaccines, and advances from biomaterials and engineering that address these important public health challenges.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Adenoviridae/genetics , Animals , Antigens, Viral/genetics , Biocompatible Materials , COVID-19/virology , Drug Delivery Systems/methods , Genetic Vectors/immunology , Humans , Immunogenicity, Vaccine , Liposomes , Nanoparticles , RNA, Messenger/chemical synthesis , RNA, Messenger/immunology
7.
JAMA ; 325(15): 1535-1544, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1222577

ABSTRACT

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines. Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses. Design, Setting, and Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S. Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group). Main Outcomes and Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses. Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced. Conclusion and Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular , Immunogenicity, Vaccine , Adult , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Double-Blind Method , Female , Humans , Immunity, Humoral , Male , Middle Aged , Vaccine Potency , Young Adult
8.
J Virol ; 2021 Mar 16.
Article in English | MEDLINE | ID: covidwho-1138296

ABSTRACT

Pseudotyped viruses are valuable tools for studying virulent or lethal viral pathogens that need to be handled in biosafety level 3 (BSL-3) or higher facilities. With the explosive spread of the coronavirus disease 2019 (COVID-19) pandemic, the establishment of a BSL-2 adapted SARS-CoV-2 pseudovirus neutralization assay is needed to facilitate the development of countermeasures. Here we describe an approach to generate a single-round lentiviral vector-based SARS-CoV-2 pseudovirus, which produced a signal more than 2 logs above background. Specifically, a SARS-CoV-2 spike variant with a cytoplasmic tail deletion of 13 amino acids, termed SΔCT13, conferred enhanced spike incorporation into pseudovirions and increased viral entry into cells as compared with full-length spike (S). We further compared S and SΔCT13 in terms of their sensitivity to vaccine sera, purified convalescent IgG, hACE2-mIgG, and the virus entry inhibitor BafA1. We developed a SΔCT13-based pseudovirus neutralization assay and defined key assay characteristics, including linearity, limit of detection, and intra- and intermediate-assay precision. Our data demonstrate that the SΔCT13-based pseudovirus shows enhanced infectivity in target cells, which will facilitate the assessment of humoral immunity to SARS-CoV-2 infection, antibody therapeutics, and vaccination. This pseudovirus neutralization assay can also be readily adapted to SARS-CoV-2 variants that emerge.IMPORTANCESARS-CoV-2 is the etiologic agent of the COVID-19 pandemic. The development of a high throughput pseudovirus neutralization assay is critical for the development of vaccines and immune-based therapeutics. In this study, we show that deletion of the cytoplasmic tail of the SARS-CoV-2 spike leads to pseudoviruses with enhanced infectivity. This SΔCT13-based pseudovirus neutralization assay should be broadly useful for the field.

10.
Nature ; 590(7847): 630-634, 2021 02.
Article in English | MEDLINE | ID: covidwho-960322

ABSTRACT

Recent studies have reported the protective efficacy of both natural1 and vaccine-induced2-7 immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion. Depletion of CD8+ T cells in convalescent macaques partially abrogated the protective efficacy of natural immunity against rechallenge with SARS-CoV-2, which suggests a role for cellular immunity in the context of waning or subprotective antibody titres. These data demonstrate that relatively low antibody titres are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may contribute to protection if antibody responses are suboptimal. We also show that higher antibody titres are required for treatment of SARS-CoV-2 infection in macaques. These findings have implications for the development of SARS-CoV-2 vaccines and immune-based therapeutic agents.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , Disease Models, Animal , SARS-CoV-2/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , Female , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Regression Analysis , Viral Load/immunology , COVID-19 Serotherapy
11.
Abdom Radiol (NY) ; 46(3): 1263-1271, 2021 03.
Article in English | MEDLINE | ID: covidwho-774406

ABSTRACT

OBJECTIVES: To determine the feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. METHODS: 60 patients who expired between 04/22/2020-05/06/2020 due to COVID-19 were considered for inclusion in the study, based on availability of study staff. Minimally invasive ultrasound-guided autopsy was performed with 14G core biopsies through a 13G coaxial needle. The protocol required 20 cores of the liver, 30 of lung, 12 of spleen, 20 of heart, 20 of kidney, 4 of breast, 4 of testis, 2 of skeletal muscle, and 4 of fat with total of 112 cores per patient. Quality of the samples was evaluated by number, size, histology, immunohistochemistry, and in situ hybridization for COVID-19 and PCR-measured viral loads for SARS-CoV-2. RESULTS: Five (5/60, 8%) patients were included. All approached families gave their consent for the minimally invasive autopsy. All organs for biopsy were successfully targeted with ultrasound guidance obtaining all required samples, apart from 2 patients where renal samples were not obtained due to atrophic kidneys. The number, size, and weight of the tissue cores met expectation of the research group and tissue histology quality was excellent. Pathology findings were concordant with previously reported autopsy findings for COVID-19. Highest SARS-CoV-2 viral load was detected in the lung, liver, and spleen that had small to moderate amount, and low viral load in was detected in the heart in 2/5 (40%). No virus was detected in the kidney (0/3, 0%). CONCLUSIONS: Ultrasound-guided percutaneous post-mortem core biopsies can safely provide adequate tissue. Highest SARS-CoV-2 viral load was seen in the lung, followed by liver and spleen with small amount in the myocardium.


Subject(s)
Autopsy/methods , COVID-19/pathology , Ultrasonography, Interventional/methods , Aged , Aged, 80 and over , Biopsy , Feasibility Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2
12.
Nat Med ; 26(11): 1694-1700, 2020 11.
Article in English | MEDLINE | ID: covidwho-744383

ABSTRACT

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Subject(s)
Adenoviridae/genetics , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Genetic Vectors , Humans , Male , Mesocricetus , SARS-CoV-2/genetics , Severity of Illness Index , Vaccines, Synthetic/genetics , Vaccines, Synthetic/therapeutic use , Viral Load
13.
Nature ; 586(7830): 583-588, 2020 10.
Article in English | MEDLINE | ID: covidwho-690836

ABSTRACT

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Macaca mulatta , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines , Disease Models, Animal , Female , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Macaca mulatta/virology , Male , SARS-CoV-2 , Vaccination , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL